

Course:	Chemical Engineering Lab 4 0905562 (1 Cr. – Core Course)	
Catalogue Data:	alogue Data: Selected experiments drawn from Reaction engineering & Process dynamics courses (090 0905421) which include: Determination of reaction kinetics using Batch & Continuous S Tank and Tubular Reactors, Development of reaction kinetics using hydraulic analogy for (irreversible & reversible) and series reactions, Temperature measurement, Empirical mod of concentration dynamics in a continuous stirred tank, level process control, Open simulation of higher order process including the effect of dead time using SIMUL Simulation of closed loop first-order process with P-, PI and PID controllers using SIMULIN	
Prerequisites by Course:	0905482 & 0905421	
Prerequisites by topic:	 Students should have a good background on the following topics: Theory of chemical engineering reaction kinetics CSTR, PFR & Batch reactors Process dynamics and process reaction curve Closed loop response with different types of controllers Empirical methods for tuning feedback controllers 	
References:	See the experiments' manual and the references therein	
Schedule & Duration:	10 - 12 Weeks, 3 hours lab sessions	
Minimum Studer Material:	at Lab sheets	
Minimum Colleg Facilities:	e Chemical Engineering Reaction & Control laboratories with process simulation software	
Course Objective	 1. Determination of reaction kinetics using batch, tubular & CST reactors experiments 2. Development of the reaction kinetics for irreversible, reversible & parallel reactions using 	
hydraulic Course Outcome	 analogue 3. Perform a steady state MB on a CSTR and plug flow reactor 6. Study the static and dynamic characteristics of various temperature measuring devices 7. Perform empirical modelling of the concentration dynamics in a CSTR reactor using the stepresponse method 8. Study the control elements of a closed loop level process and the effects of PID-controller parameters on the process response under set point and disturbance changes 9. Study the open loop response of higher order processes and the stability regions of P-, PI- and PID controllers of first order process using SIMULINK modules s (Related to ABET A2K): 	
	completion of this course, the students should be able to:	

- 1. Analyse measured experimental data obtained from batch, tubular and CST reactor experiments to determine reaction kinetics (**O6**)
- 2. Understand the similarity between hydraulic driving force for flow systems and the reactant concentration driving force in reacting systems (O1)
- **3.** Estimate the time constant, steady state gain, connection of thermocouples and hysteresis of temperature measuring devices
- 4. Understand the closed loop dynamics of level process (interacting tanks) and tuning of PI controller (O2)
- 5. Model the Continuous stirred tank concentration dynamics using the FOPD model (O1)
- 6. Use SIMULINK environment to understand the behaviour of higher order system dynamics and determine the stability region of PID controller for a FOPD Process (**O2**)
- 7. To work effectively in team and take initiatives.(O5)

Course Topics:

Experiment	Description	Week
E. 1	Determination of ethylacetate saponification reaction kinetics in a CSTR	1
E. 2	Determination of ethylacetate saponification reaction kinetics in a batch reactor	2, 3
E. 3	Steady state performance of a PFR	4
E. 4	Hydraulic analogue	5
E.5	Empirical modelling of concentration dynamics in a CSTR	6
E.6	Static and dynamic characteristics of selected temperature measuring devices	7
E. 7	Control of a level process (two interaction tanks) using P & PI controller	8
E. 8	Simulation of open and closed loop processes & determination of PID controller stability region using SIMULINK modules	9

Computer Usage:	Use of SIMULINK software			
Attendance: Assessments:	Lab attendance is mandatory where the UJ policy on absence is applicable. Exams and assignments.			
Grading policy:				
	Lab evaluation	10 %		
	Reports	30 %		
	Midterm Exam	20 %		
	Final Exam	40 %		

Total

Instructor:

Instructor Name	Office	Ext.	E-mail
Prof. Menwer Attarakih	CHE Dept.	22887	<u>attarakih@yahoo.com</u> <u>m.attarakih@ju.edu.jo</u>

100%

Last Updated: 5. Feb, 2019.

References: See the Experimental sheets